

Solar Resource Assessment: A Practical Overview Dr. Ozgur Gurtuna gurtuna@turquoisetech.com

May 17, 2012 First Canadian Photovoltaics Graduate School Ottawa

Agenda

- Motivation and definitions
- Comparative overview of SRA methods
- Data availability in Canada
- Case study

Definitions and Units

- Insolation
 - Generic term representing the solar energy received on a horizontal surface regardless of the time interval
- Irradiance (W/m2) -> Power
 - Radiation incident onto a surface
 - Instantaneous insolation
- Irradiation (J/m2 or Wh/m2) -> Energy
 - Total irradiance over a specific time period
 - Usually one hour, one day

What Are We Trying to Estimate?

- Solar radiation at the surface of Earth
 - Composed of:
 - Direct radiation
 - Diffuse radiation
 - Global Horizontal Irradiance (GHI)
 - "Fuel" of solar PV projects
 - Direct Normal Irradiance (DNI)
 - "Fuel" of concentrating solar and solar thermal applications

Components of Solar Radiation

- As the solar radiation passes through the atmosphere, some of it is absorbed or scattered by air molecules, water vapor, aerosols, and clouds.
- Direct solar radiation
 - Radiation that passes through directly to the Earth's surface.
- Diffuse solar radiation
 - Radiation that has been scattered out of the direct beam.
- Global solar radiation
 - The direct component of sunlight plus the diffuse component of skylight falling together on a horizontal surface.

Atmospheric Effects

W. C. Dickinson and P. N. Cheremisinoff (1980)

Three Main Determinants of Solar Irradiance

- Earth's orbital position
 - extraterrestrial solar radiant flux
 - Near constant value for our time scale of interest (decades)
 - Very simple to model (adjustment based on Sun-Earth distance)
- Solar geometry
 - Latitude (energy density)
 - Seasonal and diurnal variation
 - Deterministic and relatively easy to model
- Atmospheric effects
 - Atmospheric turbidity: absorption and scattering by air molecules, water vapour and aerosols
 - Reflection by clouds
 - Hardest to model; not deterministic
 - Largely determines the available radiation at the surface (direct, diffuse)

Daily Variation of Irradiance

Source: Schillings et al., 2004

Sources of Data

	Туре	Advantages	Disadvantages
On-site measurements	Measured	•Very accurate	Location specificCostlyNo "memory"
Reanalysis data	Modeled	Global coverageDecades of available data	Low spatial resolutionMedium-high accuracy
Satellite-to- irradiance models	Modeled	 Global coverage Relatively high spatial resolution Decades of available data 	 Medium-high accuracy Gaps in satellite data availability Snow cover difficult to handle

- Fine tuning the satellite-to-irradiance models by adjusting model parameters based on measured data
- Best of both worlds
 - Location specific accuracy of measured data
 - "Time machine" advantage of satellite data

Ground-based Data Availability in Canada

- Limited availability of historical solar radiation data
- Obtaining recent data (<5 years) is especially problematic.

Ground Station for On-site Measurements

- Pyranometer, pyrheliometer and a shadow pyranometer on a tracking system.
- Cost: approximately \$28,500
- Source: meteorologyshop.eu Kippzonen.com

Ground-based Data Availability in the US

- Data coverage from mid 1990s to yesterday
- By-minute data sets
- Publicly accessible

Image credit: NOAA

http://www.srrb.noaa.gov/surfrad/

Satellite-based Data Availability in Canada

- Hourly dataset covering [2000-2011]
- 1-2
 km/pixel
 spatial
 resolution
- Very recent data available

Image credit: Turquoise

Implementation Example

GOES 11 Image Feb 10, 2007 9pm GMT

Cloud Index

Irradiance map

Satellite Data Availability (Global)

- Satellite systems providing imagery
 - GOES (Americas)
 - Meteosat (Europe, Africa, Middle East)
 - MTSAT, FY (Asia, Australia)
- Data availability
 - Going back multiple decades
- Image refresh rate
 - Depends on the type of satellite (every 15 minutes for latest generation of Meteosat images)

Statistical Characterization of the Resource

- Time series data
- Histograms
- Heatmaps
- P95
- Typical Meteorological Year

Common Metrics

- Hourly GHI
 - Easiest way to deal with missing data points
 - Can be easily converted to daily and annual averages
 - 150-160 watts/m2 for Ottawa-Toronto area
- kWh/kW
 - Annual output of installed capacity
 - 1200 kWh/kW for Ottawa-Toronto area
- Full sun hours
 - Number of hours per day at 1000 watts/m2

Historical Data for Ottawa

Ottawa NRC

Data source: Environment Canada

The Need for Historical Data

Maps, P95 and Time Series

Histograms

Heatmap Example

Average hourly irradiance (watts/m2)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
4:00	0	0	0	0	0	0	0	0	0	0	0	0
5:00	0	0	0	0	7	18	12	0	0	0	0	0
6:00	0	0	0	20	67	91	81	34	2	0	0	0
7:00	1	15	78	117	188	207	234	176	51	8	0	0
8:00	2	31	110	212	281	318	322	262	146	56	7	0
9:00	51	119	224	327	400	434	453	388	263	151	59	29
10:00	142	215	332	436	515	567	599	519	402	248	145	119
11:00	174	262	372	489	594	621	660	587	458	303	190	153
12:00	209	312	424	529	653	640	688	604	508	343	222	192
13:00	213	303	408	527	668	685	677	617	511	347	228	221
14:00	192	280	378	507	611	640	638	580	460	316	191	168
15:00	135	221	322	460	560	575	568	529	413	263	154	119
16:00	49	118	225	331	433	439	423	396	286	149	66	35
17:00	8	50	139	244	335	351	331	290	195	84	16	3
18:00	0	2	41	129	202	217	213	159	71	12	0	0
19:00	0	0	0	6	0	6	0	0	0	0	0	0
20:00	0	0	0	1	18	23	24	4	0	0	0	0
21:00	0	0	0	0	0	0	0	0	0	0	0	0

Typical Meteorological Year

- Data sets of hourly values of solar radiation and meteorological elements for a 1-year period.
- Used for numerical simulation of solar energy conversion systems and building systems to analyze different system types, configurations, and locations.
- They represent typical rather than extreme conditions.

Image source: NREL

Common Software Tools

- RETScreen (<u>http://www.retscreen.net/</u>)
- PVSyst (<u>http://www.pvsyst.com</u>)
- PVSol (<u>http://www.valentin.de/</u>)
- Homer (<u>https://analysis.nrel.gov/homer/</u>)
- SAM (<u>https://sam.nrel.gov/</u>)

ONAL RENEWABLE ENERGY LABORATORY System Advisor Model (SAM)

Case Study – Thunder Bay

Category	Inputs
Price per kWh (in cents): The rate at which the generated electricity will be	54.9
sold to the grid.	
Slope (in degrees): The angle between the panels and the horizontal.	20
Azimuth (in degrees): The preferred orientation of the panels.	0
Power Capacity (in kW): Total power capacity of the system (i.e., capacity	14.4 kWp
of each panel x the number of panels)	•
Efficiency (%): The nominal efficiency (%) of the PV modules used in the	15.2%
project	
Miscellaneous losses (%): Various system losses (e.g., due to the presence	5%
of dirt or snow on the panels, wiring, etc.). Typical values range from zero	
to a few percent.	
Inverter – Efficiency (%): Efficiency of the inverter used to transform the	94.5%
DC output to AC. Typical values are between 90 to 95%.	
inverter – Capacity (KW): The nominal output of the inverter (AC).	10 kW
Cost of installation (per kW)	\$4500 28

RETScreen Energy Model

Proposed case power system

Technology

Photovoltaic

Analysis type

Method 1
 Method 2

Resource assessment

Solar tracking mode Slope Azimuth

Fixed
20.0

Show data

		Daily solar radiation -	Daily solar	Electricity export	Electricity
	Month	horizontal	radiation - tilted	rate	exported to grid
		kWh/m²/d	kWh/m²/d	\$/MWh	MWh
	January	1.25	1.96	549.0	0.872
	February	1.97	2.72	549.0	1.076
	March	3.21	3.91	549.0	1.649
	April	4.56	4.99	549.0	1.957
	May	5.74	5.91	549.0	2.326
	June	5.98	5.98	549.0	2.236
	July	6.10	6.18	549.0	2.342
	August	5.34	5.70	549.0	2.172
	September	3.87	4.50	549.0	1.709
	October	2.34	3.06	549.0	1.245
	November	1.38	2.05	549.0	0.840
	December	1.10	1.86	549.0	0.816
	Annual	3.58	4.08	549.00	19.241
Annual solar radiation - horizontal	MWh/m²	1.31			
Annual solar radiation - tilted	MWh/m²	1.49			

Photovoltaic

Thorovortaic			
Туре		mono-Si	
Power capacity	kW	14.40	
Manufacturer			
Model			
Efficiency	%	15.2%	
Nominal operating cell temperature	°C	45	
Temperature coefficient	% / °C	0.40%	
Solar collector area	M ²	95	
Miscellaneous losses	%	5.0%	
Inverter			
Efficiency	%	94.5%	
Capacity	kW	10.0	
Miscellaneous losses	%	0.0%	
Summary			
Capacity factor	%	15.3%	
Electricity exported to grid	MWh	19.241	

Inc

RETScreen Financial Model

Financial parameters			
Inflation rate	%	2.0%	
Project life	yr	20	
Debt ratio	%	70%	
Debt interest rate	%	6.00%	
Debt term	yr	10	
Initial costs			
Power system	\$	64,800	100.0%
Other	\$		0.0%
Total initial costs	\$	64,800	100.0%
Incentives and grants	\$		0.0%
	Ŷ		0.070
Annual costs and debt payments			:
O&M (savings) costs	\$		
Fuel cost - proposed case	\$	0	
Debt payments - 10 yrs	\$	6,163	
	\$		(\$)
Total annual costs	\$	6,163	ş
			۰ آو
Annual savings and income			Ę.
Fuel cost - base case	\$	0	cas
Electricity export income	, \$	10,563	e e
	\$		ativ
Total annual savings and income	\$	10,563	la l
Financial viability			, E
Protav IRR oquity	0/_	20.6%	0
Dro tax IDD accote	/0	29.078	
Simple pauback	/0	10.478	
Simple payback	yı vr	0.1	
Equity payback	yı	5.9	

Year

Conclusion

- Solar resource assessment is a key part of feasibility analyses for solar energy investments.
- Data availability is quite limited in Canada, especially for recent years.
- Satellite-based technologies are rapidly maturing and becoming a viable alternative for supplementing ground-based measurements.